Innovative process technologies and their contribution to decarbonise the EU industry sector

Tobias Fleiter, Andrea Herbst Fraunhofer Institute for Systems and Innovation Research

Climate Recon Webinar, November 26

AGENDA

- 1. Introduction: Challenges in industry decarbonisation
- 2. Innovations for deep decarbonisation
- 3. Scenarios for decarbonisation towards 2050
- 4. Conclusions

Industry GHG emissions about 19% of EU total in 2015

Industry sector:

- Industry in 2015 about 19 % of total **GHG** emissions
- 37% reduction from 1990 to 2015 in industry sector
 - **EU Low-Carbon** Roadmap from 2011 requires emission reduction of 83-87% by 2050 for all sectors

Today's available technologies are not sufficient for decarbonisation

Innovative low-carbon technologies are needed

Many process innovations are under development

Source: Towards the EU ETS Innovation fund workshops (online available)

Use technology readiness levels (TLR) to measure distance to market entry

Actual system "proven" through successful system and/or mission operations

Actual system completed and :qualified" through test & demonstration (in the operational environment

System prototype demonstration in the planned operational environment

System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in 'laboratory' environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

Example from NASA by Mankins (2009)

TRLs reveal diversity of innovations with regard distance to market

Paper

Steel

3 scenarios are simulated with bottom-up model FORECAST

Scenario definition										
Mitigation options	REF	TRANS-CCS	TRANS-IPT							
Energy efficiency	According to current policy framework and historical trends.	Faster diffusion of incremental process improvements (BAT & INNOV ≥TRL 5).	= TRANS-CCS + selected radical process innovations (INNOV ≥TRL 5)							
Fuel switch	Fuel switching driven by energy and CO ₂ -prices	Financial support for Fuel switching to biomass and PtH	= TRANS-CCS + Higher financial support for biomass and PtH							
CCS	-	CCS for major processes	-							
Recycling and re-use	Slow increase in recycling rates based on historical trends.	Faster increase in recycling (e.g. steel, aluminium, paper).	= TRANS-CCS							
Material efficiency and substitution	Based on historic trends.	Increase in material efficiency & substitution.	= TRANS-CCS							

- Bottom-up simulation •
- High technology detail •
- Country level •
- **Policy instruments** •

Results: CO2 reduction of >80% possible – without CCS

EU 28 industrial GHG emissions by scenario

Reference scenario (REF):

Slow decrease in GHG, driven by energy efficiency, some recycling and fuel switch away from fuel oil

Scenarios TRANS-CCS and TRANS-IPT:

- Reduction in industrial GHG emissions:
 - ~70% by 2050 compared to 2015
 - ~83% by 2050 compared to 1990
- Remaining challenges:
 - Process-related emissions
 - Remaining natural gas

Decarbonisation (without CCS) **SET-Nav** increases electricity demand drastically^{strategic Energy Roadmap}

Final energy demand for process heating (>500°C) scenario TRANS-IPT, EU28

Fuel switch in TRANS-IPT scenario:

- **Definition**: Hydrogen accounted as electricity with 70% efficiency
- Increase in **electricity** driven by radical process switch (e.g. H2-Direct Reduction replacing Basic oxygen furnace steel)
- **Biomass** often co-firing in existing processes (e.g. clinker kiln)
- **Timing**: Biomass before 2030 and electricity/hydrogen after 2030
- High financial support for biomass, PtH and H2 needed (CO2 price was not sufficient)
- Across all sectors and scenario still a substantial amount of **natural gas** is used

Scenario TRANS-IPT requires fundamental change in process technologies

Assumptions

- Market entry in 2030
- Reaching saturation in 2050
- **Requires replacement** of entire capital stock within only 20 years
- Technologies need to be ready for fast market introduction by 2030

Comparison: Relevance of technologies varies across studies for Germany

Comparison of selected industry decarbonisation studies for Germany

Scenario	GHG reduction	Energy efficiency	Biomass	Hłd	ÐŧĠ	SCS	New processes	Circular economy	Material efficiency & substitution
BMUB KS95	-99%								
UBA THGND	-95%								
BDI 95%Pfad	-95%								
BMWi Langfrist	-84%								
BMUB KS80	-75%								
BDI 80%Pfad	-65%								

Summary: Innovations facilitate decarbonisation of EU industry

Is the EU ETS sufficient to achieve deep decarbonisation of industry?

- Phase 4 needs to make the process innovations ready for large-scale market entry in 2030 latest
- The EU ETS needs to make new solutions cost-effective, e.g. technologies with high operational costs due to hydrogen or electricity use
- The ETS needs to generate sufficient trust to allows for billion euros investments to take place
- Innovations in material efficiency and circular economy require effective price signals along the entire value chain

Contact: Tobias.Fleiter@isi.fhg.de

Thank you for your attention!

Further material:

- Set-Nav Issue Paper on industry
- Set-Nav Report on industry

Available at:

http://www.set-nav.eu/content/pages/results

-> "Energy Systems: Demand perspective"

